3.134 \(\int \frac{\sec (e+f x) (c-c \sec (e+f x))^{3/2}}{\sqrt{a+a \sec (e+f x)}} \, dx\)

Optimal. Leaf size=94 \[ -\frac{2 c^2 \tan (e+f x) \log (\sec (e+f x)+1)}{f \sqrt{a \sec (e+f x)+a} \sqrt{c-c \sec (e+f x)}}-\frac{c \tan (e+f x) \sqrt{c-c \sec (e+f x)}}{f \sqrt{a \sec (e+f x)+a}} \]

[Out]

(-2*c^2*Log[1 + Sec[e + f*x]]*Tan[e + f*x])/(f*Sqrt[a + a*Sec[e + f*x]]*Sqrt[c - c*Sec[e + f*x]]) - (c*Sqrt[c
- c*Sec[e + f*x]]*Tan[e + f*x])/(f*Sqrt[a + a*Sec[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.265812, antiderivative size = 94, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 36, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.056, Rules used = {3955, 3952} \[ -\frac{2 c^2 \tan (e+f x) \log (\sec (e+f x)+1)}{f \sqrt{a \sec (e+f x)+a} \sqrt{c-c \sec (e+f x)}}-\frac{c \tan (e+f x) \sqrt{c-c \sec (e+f x)}}{f \sqrt{a \sec (e+f x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[e + f*x]*(c - c*Sec[e + f*x])^(3/2))/Sqrt[a + a*Sec[e + f*x]],x]

[Out]

(-2*c^2*Log[1 + Sec[e + f*x]]*Tan[e + f*x])/(f*Sqrt[a + a*Sec[e + f*x]]*Sqrt[c - c*Sec[e + f*x]]) - (c*Sqrt[c
- c*Sec[e + f*x]]*Tan[e + f*x])/(f*Sqrt[a + a*Sec[e + f*x]])

Rule 3955

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)
)^(n_), x_Symbol] :> -Simp[(d*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(c + d*Csc[e + f*x])^(n - 1))/(f*(m + n)), x
] + Dist[(c*(2*n - 1))/(m + n), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*(c + d*Csc[e + f*x])^(n - 1), x], x] /
; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[n - 1/2, 0] &&  !LtQ[m, -2
^(-1)] &&  !(IGtQ[m - 1/2, 0] && LtQ[m, n])

Rule 3952

Int[(csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)])/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) +
(a_)], x_Symbol] :> Simp[(a*c*Log[1 + (b*Csc[e + f*x])/a]*Cot[e + f*x])/(b*f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[c +
 d*Csc[e + f*x]]), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin{align*} \int \frac{\sec (e+f x) (c-c \sec (e+f x))^{3/2}}{\sqrt{a+a \sec (e+f x)}} \, dx &=-\frac{c \sqrt{c-c \sec (e+f x)} \tan (e+f x)}{f \sqrt{a+a \sec (e+f x)}}+(2 c) \int \frac{\sec (e+f x) \sqrt{c-c \sec (e+f x)}}{\sqrt{a+a \sec (e+f x)}} \, dx\\ &=-\frac{2 c^2 \log (1+\sec (e+f x)) \tan (e+f x)}{f \sqrt{a+a \sec (e+f x)} \sqrt{c-c \sec (e+f x)}}-\frac{c \sqrt{c-c \sec (e+f x)} \tan (e+f x)}{f \sqrt{a+a \sec (e+f x)}}\\ \end{align*}

Mathematica [C]  time = 1.84673, size = 173, normalized size = 1.84 \[ \frac{c e^{-2 i (e+f x)} \left (1+e^{2 i (e+f x)}\right )^2 \cos \left (\frac{1}{2} (e+f x)\right ) \cot \left (\frac{1}{2} (e+f x)\right ) \sec ^3(e+f x) \sqrt{c-c \sec (e+f x)} \left (-1+\left (4 \log \left (1+e^{i (e+f x)}\right )-2 \log \left (1+e^{2 i (e+f x)}\right )\right ) \cos (e+f x)\right ) \left (\cos \left (\frac{1}{2} (e+f x)\right )+i \sin \left (\frac{1}{2} (e+f x)\right )\right )}{2 f \left (1+e^{i (e+f x)}\right ) \sqrt{a (\sec (e+f x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sec[e + f*x]*(c - c*Sec[e + f*x])^(3/2))/Sqrt[a + a*Sec[e + f*x]],x]

[Out]

(c*(1 + E^((2*I)*(e + f*x)))^2*Cos[(e + f*x)/2]*Cot[(e + f*x)/2]*(-1 + Cos[e + f*x]*(4*Log[1 + E^(I*(e + f*x))
] - 2*Log[1 + E^((2*I)*(e + f*x))]))*Sec[e + f*x]^3*Sqrt[c - c*Sec[e + f*x]]*(Cos[(e + f*x)/2] + I*Sin[(e + f*
x)/2]))/(2*E^((2*I)*(e + f*x))*(1 + E^(I*(e + f*x)))*f*Sqrt[a*(1 + Sec[e + f*x])])

________________________________________________________________________________________

Maple [A]  time = 0.303, size = 149, normalized size = 1.6 \begin{align*} -{\frac{\cos \left ( fx+e \right ) }{af\sin \left ( fx+e \right ) \left ( -1+\cos \left ( fx+e \right ) \right ) } \left ( 2\,\cos \left ( fx+e \right ) \ln \left ( -{\frac{-1+\cos \left ( fx+e \right ) -\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) +2\,\cos \left ( fx+e \right ) \ln \left ( -{\frac{-1+\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) +\cos \left ( fx+e \right ) +1 \right ) \left ({\frac{c \left ( -1+\cos \left ( fx+e \right ) \right ) }{\cos \left ( fx+e \right ) }} \right ) ^{{\frac{3}{2}}}\sqrt{{\frac{a \left ( 1+\cos \left ( fx+e \right ) \right ) }{\cos \left ( fx+e \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)*(c-c*sec(f*x+e))^(3/2)/(a+a*sec(f*x+e))^(1/2),x)

[Out]

-1/f/a*(2*cos(f*x+e)*ln(-(-1+cos(f*x+e)-sin(f*x+e))/sin(f*x+e))+2*cos(f*x+e)*ln(-(-1+cos(f*x+e)+sin(f*x+e))/si
n(f*x+e))+cos(f*x+e)+1)*cos(f*x+e)*(c*(-1+cos(f*x+e))/cos(f*x+e))^(3/2)*(1/cos(f*x+e)*a*(1+cos(f*x+e)))^(1/2)/
sin(f*x+e)/(-1+cos(f*x+e))

________________________________________________________________________________________

Maxima [B]  time = 1.88113, size = 373, normalized size = 3.97 \begin{align*} -\frac{2 \,{\left (c \cos \left (\frac{1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) \sin \left (2 \, f x + 2 \, e\right ) -{\left (c \cos \left (2 \, f x + 2 \, e\right )^{2} + c \sin \left (2 \, f x + 2 \, e\right )^{2} + 2 \, c \cos \left (2 \, f x + 2 \, e\right ) + c\right )} \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right ) + 1\right ) + 2 \,{\left (c \cos \left (2 \, f x + 2 \, e\right )^{2} + c \sin \left (2 \, f x + 2 \, e\right )^{2} + 2 \, c \cos \left (2 \, f x + 2 \, e\right ) + c\right )} \arctan \left (\sin \left (\frac{1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ), \cos \left (\frac{1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) + 1\right ) -{\left (c \cos \left (2 \, f x + 2 \, e\right ) + c\right )} \sin \left (\frac{1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right )\right )} \sqrt{a} \sqrt{c}}{{\left (a \cos \left (2 \, f x + 2 \, e\right )^{2} + a \sin \left (2 \, f x + 2 \, e\right )^{2} + 2 \, a \cos \left (2 \, f x + 2 \, e\right ) + a\right )} f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(c-c*sec(f*x+e))^(3/2)/(a+a*sec(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

-2*(c*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))*sin(2*f*x + 2*e) - (c*cos(2*f*x + 2*e)^2 + c*sin(2*
f*x + 2*e)^2 + 2*c*cos(2*f*x + 2*e) + c)*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e) + 1) + 2*(c*cos(2*f*x + 2*
e)^2 + c*sin(2*f*x + 2*e)^2 + 2*c*cos(2*f*x + 2*e) + c)*arctan2(sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x +
2*e))), cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 1) - (c*cos(2*f*x + 2*e) + c)*sin(1/2*arctan2(s
in(2*f*x + 2*e), cos(2*f*x + 2*e))))*sqrt(a)*sqrt(c)/((a*cos(2*f*x + 2*e)^2 + a*sin(2*f*x + 2*e)^2 + 2*a*cos(2
*f*x + 2*e) + a)*f)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{{\left (c \sec \left (f x + e\right )^{2} - c \sec \left (f x + e\right )\right )} \sqrt{-c \sec \left (f x + e\right ) + c}}{\sqrt{a \sec \left (f x + e\right ) + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(c-c*sec(f*x+e))^(3/2)/(a+a*sec(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral(-(c*sec(f*x + e)^2 - c*sec(f*x + e))*sqrt(-c*sec(f*x + e) + c)/sqrt(a*sec(f*x + e) + a), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(c-c*sec(f*x+e))**(3/2)/(a+a*sec(f*x+e))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 2.17438, size = 154, normalized size = 1.64 \begin{align*} \frac{2 \,{\left (c^{4} \log \left (c \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )^{2} - c\right ) - \frac{{\left (c \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )^{2} - c\right )} c^{4} + c^{5}}{c \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )^{2} - c}\right )} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )^{3} + \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )\right )}{\sqrt{-a c} c f{\left | c \right |}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(c-c*sec(f*x+e))^(3/2)/(a+a*sec(f*x+e))^(1/2),x, algorithm="giac")

[Out]

2*(c^4*log(c*tan(1/2*f*x + 1/2*e)^2 - c) - ((c*tan(1/2*f*x + 1/2*e)^2 - c)*c^4 + c^5)/(c*tan(1/2*f*x + 1/2*e)^
2 - c))*sgn(tan(1/2*f*x + 1/2*e)^3 + tan(1/2*f*x + 1/2*e))/(sqrt(-a*c)*c*f*abs(c))